
In: Proceedings of Designing Interactive Systems (DIS) ´97, Amsterdam 18.-20. August 1997, pp. 365 - 376

How to Make Software Softer -

Designing Tailorable Applications
Oliver Stiemerling, Helge Kahler, Volker Wulf

University of Bonn
Institute for Computer Science III

Römerstr. 164
53117 Bonn

{os, kahler, volker}@cs.uni-bonn.de

ABSTRACT
The design of tailorable systems is an important issue for
fields of application which are characterized by
differentiation and dynamics. We show how tailorability can
be combined with approaches of evolutionary and
participative software-engineering and discuss some
conceptual problems arising from this approach. Moreover,
we present two case studies on how to design tailorable
functionality in a groupware development project.

KEYWORDS
Tailorability, groupware, participatory design, design cases

INTRODUCTION
Tailorability is a property of software which allows to
change certain aspects of the software in order to meet
different user requirements. It is widely agreed that
tailorability is one of the major future challenges in the
design of user interfaces and interactive systems ([29], [4],
[18], [11], [25], [19], [14], [1]).

Several authors have pointed out that with tailorable
software one has to take into account several problems
which classical design methodologies do not (and do not
have to) address. On a technical level, the software
architecture has to provide means of changing system
behavior other than rewriting and recompiling source code.
[11], [10], [21] stress the basic flexibility of object oriented
architectures in this respect. For instance, OVAL (see [19]) is
based on four elements (objects, views, agents and links)
which constitute a language which can be used to rapidly
build and tailor groupware applications. LINKWORKS by
DEC (see [5]) is another example of a tailorable system
based on an object oriented architecture. The system
provides a set of high level language elements and tools for
deriving new classes of application objects and redefining
system behavior. Tailorability as understood by the
designers of the systems mentioned above goes very far,

allowing to build - from the same construction set - full
fledged applications which may serve rather divers
purposes. The basic complexity of creating an application,
however, steers this brand of tailorability towards the
community of professional designers, resulting in powerful
and efficient high-level design-tools for building and
maintaining software.

On a more user centered level, tailorability can be regarded
as the means to adapt existing applications to changes in the
needs of single users or groups of users, making the software
better fit the current work situation. Examples are the
recording of macros in word processors to automate
sequentially executed tasks, the implementation of an access
policy using mechanisms for discretionary access control or
just changing the screen to the current user’s favorite color.
The basic complexity of these actions is not beyond the
scope of end users (see [22], [11]). Tailorability of this kind,
however, provides several new challenges for the design
process of software.

In this paper we will focus on the design process for
tailorable software. We will present two rather different
cases studies out of the context of the POLITeam Project
(see [17]) in order to show how end-user tailorability can be
accommodated in a participative design approach. The first
section examines the initial motivation for making software
tailorable and from this perspective derives a number of
questions which have to be addressed during the design
process. We then focus on the task of capturing diversified
and dynamic requirements. The second section gives a short
overview over the context provided by the POLITeam
Project. In the third section we discuss two actual design
cases in this context: the redesign of a search tool for
documents and the redesign of the discretionary (i.e. user
tailorable) access control system in a groupware system. The
conclusion sums up the lessons learnt from these
experiences and presents questions which have not yet been
answered.

DESIGNING TAILORABLE SOFTWARE
In this section, we want to examine the initial motivation for
designing tailorable software in order to derive and clarify
the questions which have to be addressed in the design of
tailorable software.

http://www.informatik.uni-bonn.de/~os/
http://www.informatik.uni-bonn.de/~kahler/
http://www.informatik.uni-bonn.de/~volker/

O. Stiemerling, H. Kahler, V. Wulf: How to Make Software Softer - Designing Tailorable Applications

Traditional software design following the waterfall model
(see [2]) is concerned with capturing, realizing and testing
one set of requirements, reflecting a snapshot of one field of
application (see figure 1). The field of application may be a
specific organization with special requirements concerning
functionality and interface features.

Fig. 1: Designing software which meets the requirements of
one field of application at one time

Software development according to the waterfall model
focuses on one field of application and assumes that the
requirements for system design are clear at the very
beginning of a project and stable for a long period of time.
Both of these underlying assumptions have been questioned
for years. Therefore, evolutionary approaches to software
engineering try to capture dynamically evolving
requirements employing an iterative design procedure (see
[3], [12]). In participative and evolutionary approaches the
users of an application are actively involved in the design
process and are thus given the opportunity to articulate their
requirements (see [7], [8]).

These approaches indicate a viable way to overcome
problems of traditional software development methods.
Nevertheless they require the involvement of the system
developers whenever a new requirement is pointed out by
the users. In working environments which are characterized
by a high degree of dynamics in user requirements, the
continuous involvement of the system developers may retard
or even impede a necessary adaptation of the software.
Therefore, [31] have proposed to combine evolutionary and
participative software development with activities of
tailoring in use. Since tailoring can be performed by users,
local experts, or support staff, the implementation time for
small changes may be reduced significantly which often
appears to be critical to the success of an application.

Figure 2 shows how tailoring activities can be combined
with evolutionary and participative software-development.
This combination extends the STEPS process model
developed by Floyd et al. ([7]).

Apart from dynamically evolving user requirements,
diversity of requirements is another reason for designing
tailorable software. Requirement diversity is encountered,
for instance, in product development for large markets.
Tailorability allows a generic product to satisfy the diverse
demands of many customers. Additionally, diversity is
encountered in the development of custom-made multi-user

software, especially groupware, as inter-individual
differences as well as different organizational roles or tasks
may require distinct views on data or different functionality.

Thus, dynamically evolving and differentiated requirements
from different fields of application are the main reason for
the development of tailorable software (see [11], [30], [26],
[24]). Taking these considerations into account, the design
process for tailorable applications has to capture the
diversity and dynamics of the fields of application, as shown
in figure 3.

Considering this modified view of designing, we have to
deal with the following questions concerning the
particularities of designing flexible software:

• How can the designer capture diversified and future
requirements and how can he distill the necessary range
of flexibility from these requirements?

project
established

revision
established

use

user

developer

application
system
design

system
specification

software
realization

embedment
preparation

system
version

production

cycles

product

process

maintenance tailoring

Fig. 2: Extended STEPS-approach - Combining
evolutionary and participative software development with

tailoring in use (see [31])

Fig. 3: The central question of this paper: how to design
tailorable software?

O. Stiemerling, H. Kahler, V. Wulf: How to Make Software Softer - Designing Tailorable Applications

• How can this range of flexibility be implemented
technically, leading to the question of software
architecture?

• How can the technical flexibility offered by the
architecture can be made accessible for end users
through the user interface?

In the rest of the paper we focus primarily on the first
question in the context of experiences from the POLITeam
project. In the next subsection, we want to take a closer look
at the relationship between tailorability and evolutionary &
participatory design.

The relationship of tailorability and evolutionary &
participatory design
Kjær and Madsen [16] have applied participatory techniques
in analyzing the requirements for flexibility of a picture
archive and communication system in a hospital. They
conclude "... flexibility concerns not the regular procedures
and standard way of doing things but the unexpected,
unprecedented, the exceptional cases, situations and events
which are only experienced by the people who do the day to
day work" (p. 22).

Thus, participatory & evolutionary design can - on one hand
- be employed to design the "right kind" of tailorability. In
this sense, it is used to expose diversity in requirements in
one or several fields of application.

On the other hand, tailorability and participatory &
evolutionary design are complementary as discussed in the
last section. In this other sense, the purpose of tailorability is
to make the software more robust to small anticipated
changes and diversities in requirements in-between phases
of design, while the evolutionary redesign aims at taking
into account more significant and unexpected changes.

For the purpose of the rest of this paper we want the
relationship between tailorability and participatory &
evolutionary design to be understood in the first sense, i.e.
capturing diversified (and - in a limited sense - future)
requirements.

Capturing diverse and future requirements
To determine the range of flexibility to be supported by a
tailorable application, two (at first glance) different
problems have to be addressed. On one hand, the analysis
technique has to capture the diversity of existing
requirements in different fields of application across a
market segment or across different subfields of application
in the same organization. On the other hand, it has to
"predict" future requirements.

How can the designer go about addressing the first problem,
the capturing of diversity between or within organizations
and persons?

Assuming that we cannot involve every possible user in our
design process (a safe assumption in large organizations and
markets), the first obvious step is a careful selection of
users. The selection has to be careful in the sense that we

still want to capture the full range of requirements in order
to make the system as flexible as necessary. The importance
of a careful selection is illustrated by an example reported
by Grudin in [9]. He describes the unsuccessful development
of a group scheduling tool, whose failure was caused by
only including managers into the analysis stage of the design
process. As was discovered later the subordinates had rather
different requirements which lead to a lethally low
acceptance rate of the final product.

The selection process at this stage must necessarily be of an
explorative and heuristic nature. In our design cases
described later on, we developed such heuristic selection
schemes. The selection criteria for users and organizations
in these schemes were based our past experiences
concerning e.g. the differences of access policies
encountered in public and private organizations and -
admittedly - pure guesswork. We also had to take into
account practical limitations of accessibility and time in
selecting participants for the analysis stage of the design
processes.

As the designers learn more about the diversity of
requirements in relation to different users and organizations,
the selection scheme should be refined to accommodate
newly discovered correlations between requirements and
user or organization types. This refinement may be
supported by including users and organizations into the
scheme, which are - according to the current version of the
selection scheme - redundant. If, for example, the scheme
calls for a distinction of users in private and public
organizations, redundancy may be achieved by including
several private, respectively public organizations in the
analysis stage. Thus, if the scheme does not capture all
dependencies between user (or organization) types and
requirements, some supposedly redundant entities are prone
to exhibit diverse requirements, as well. This redundancy
allows for a small degree of fault-tolerance in the scheme.

We also suggest to actively investigate the cause for the
individual requirements in each case as another way to
refine the heuristic scheme on the fly. The goal must be to
find a correlation between certain attributes of the examined
entities (organizations or persons) and the requirement
encountered, e.g. organizations with a high degree of
exposure to market pressures exhibit the need for time-
dependent access policies (see our case study).

We are aware that our heuristic approach cannot guarantee
correct results, but we believe that it can serve as an efficient
tool to obtain at least a rough idea about the degree of
flexibility necessitated by the diversity of requirements.

But what about future requirements? Ecklund et al. ([6])
suggest to extend Jacobsen´s use-case methodology (see
[13]) with the concept of change-cases in order to
accommodate future changes in requirements. Their
approach, however, concentrates on the expression of
possible changes within the use-case methodology and the
tracing of changes to other levels in the design process.

O. Stiemerling, H. Kahler, V. Wulf: How to Make Software Softer - Designing Tailorable Applications

Concerning the capturing of future requirements they only
suggest to take into account:

• "planned or scheduled changes to product / services
offerings

• user comments [...]

• review of regulatory / legal environment

• drafts of pending legislation / regulations

• review of organization’s technology & platform strategy"
(p. 354)

These points definitely are important and have to be taken
into account during design. They are useful to accommodate
clearly specifiable changes, for example, in the rate of value
added tax in accounting systems. We believe, however, that
there are changes in the environment, the consequences of
which on the software cannot be easily specified. Regard,
for example, a small but fast-growing company which wants
to introduce a new (custom-made) email system. The
company plans to multiply its workforce in the next few
years. The consequences concerning the number of possible
email accounts are easily deducted from the expected
growth. But what about the way people use email? Will
email-filters become more important, will people write less
emails "to all users", etc. These questions are not easily
answered.

We suggest to extend our heuristic selection scheme to take
into account the factors which drive organizational change
(e.g. growth, learning, change of environment). This brings
us back to the necessity of carefully selecting users and
organizations for participation. One could explicitly select
organizations (or individuals) which are further along an
assumed "change-curve" (e.g. bigger companies, companies
with a more dynamic environment, more experienced users,
etc.) in order to gain clues concerning future requirements
and usage patterns.

However, one has to keep in mind, that there are some
factors driving organizational and individual change (e.g.
new technologies) which prevent finding example
organizations or persons which represent possible "futures".

In the rest of the paper we describe and discuss how we have
employed the thoughts and concepts presented in this
section in two design cases.

The POLITeam Project
Our design cases are taken from the context of the
POLITeam project. Within the POLITeam project a
groupware application for a German federal ministry and
selected ministries of a state government and the concurrent
engineering division of a car producer is developed in an
evolutionary and participative way. The first system version
was generated by configuring the commercial product
LINKWORKS by Digital. Based on the experiences gained by
introducing the first system version in three different fields
of application, we develop advanced versions of the system.

The functionality mainly consists of an electronic circulation
folder, shared workspaces, and an event notification service.

The project started by carrying out semi-structured
interviews with future users in the three fields of application
to learn about their work practice. This information was
used to generate a prototypical configuration of the
commercial product for each of the different fields of
application. This prototype was presented in a workshop,
modified accordingly and finally introduced as the
POLITeam I system. After the introduction the users were
supported regularly by project members who communicated
their experiences to the designers of the next system version
(user advocates, see [20]). Moreover, interviews were
carried out and workshops were held regularly to allow for
direct communication between designers, support staff and
users.

One major problem with the first versions of POLITeam was
the insufficient protection of privacy. Since the system is
based on a desktop metaphor, the users expected the system
to regulate visibility and accessibility of documents
according to this metaphor. Unfortunately, the protection
mechanisms did not conform with this requirement, as they
were completely independent from the virtual desktops and
folders. Users could access any object - if not explicitly
denied by an access profile - on any desktop across the
whole virtual office using a search tool (The result of using
the search tool was a set of links through which all found
objects could be accessed). The users were very suspicious
about which aspects of their work were open to inspection
by superiors and colleagues, because the specification of
access rights was very ambiguous and unclear (see second
case study).

A first-cut solution was the removal of the search tool,
limiting the initiation of cooperation to explicitly sending
links to shared workspaces to all cooperators. As this was
not a very satisfying solution to the problem, the POLITeam
group at the University of Bonn decided to make privacy a
central theme in their redesign efforts. Since the search tool
and the access rights were clearly identified as the major
culprits of the suboptimal design, we decided to pursue two
complementary venues of redesigning the product. One
subgroup concentrated on redesigning the search tool, while
the other took on the redesign of the access control system.
The two groups met regularly to coordinate their designs
and produce an integrated solution. In the following section
we describe our experiences during the two design
processes.

TWO DESIGN CASES
Design of an access control system for groupware
The need for making the discretionary access control system
more flexible was - as mentioned above - one of the
premiere requirements voiced by users during the early
stages of the participatory design process. In this section we
describe the steps of this process concerning the design of a

O. Stiemerling, H. Kahler, V. Wulf: How to Make Software Softer - Designing Tailorable Applications

new access control system. Figure 5 shows the basic
structure of this process.

In LinkWorks (version 3.0) users can determine the access
rights for an object by choosing a predefined access profile.
The system provides eight default access profiles (e.g.
public, private, for feedback etc.), which can be changed or
extended only with a special tool, usually at the hand of the
system administrator. The user advocates in the POLITeam
project reported very early on, that the users considered the
existing access control system insufficient for their purposes,
mainly due to the following reasons (which were also
discussed and elaborated during the first user workshop):

• The access profile scheme is not flexible enough, since
user can only choose from a rather limited number of
predefined options. If the intended access policy is not
among them, end users cannot define a new one.

• In LinkWorks access rights are defined in relation to
formal organizational hierarchies. Therefore, it was
hardly possible to implement access policies to support
collaboration not following existing hierarchies.

• The access rights do not recognize the desktop metaphor,
e.g. it is possible to send somebody an object which this
person cannot access in any way. In some cases (sending
sensitive documents by mistake) this might be a
desirable effect. On the other hand, users might end up
with "dead" objects on their desks which they cannot
remove or return to the sender.

These reasons do not concern superficial elements but stem
from conceptual inconsistencies. The existing access control
system does not take the diversity of different access
policies into account, especially that:

1. foremost the end users implement access policies, not the
system administrator.

2. many organizations (at least our field of application) do
not primarily rely on formal hierarchies to structure and
organize group processes. Workgroups may be formed
orthogonal to these existing hierarchies.

3. end users seem to be easily irritated by inconsistencies in
the use of metaphors in the design of software, i.e. if they
are presented with a virtual desktop they expect it to

process with user involvementproduct process without user involvement

Figure 5: Design process for the new access control system

O. Stiemerling, H. Kahler, V. Wulf: How to Make Software Softer - Designing Tailorable Applications

"behave" like a desktop. Concerning access rights, they
expect their desk to be first and foremost a private place
("My desk is my castle").

After evaluating the results of our first user workshop we
decided to design a completely new access control system
for POLITeam. The object oriented architecture of
LinkWorks allows for such radical tailoring by providing a
high level method language. At this point we have to
distinguish between the tailoring activities by the authors
(tailoring of LinkWorks in order to implement a new access
control system) and the tailoring activities by the end users
(tailoring of the access control system in order to implement
new access policies). For the purposes of this paper we refer
to the former as "design" and the latter as "tailoring", since
it is not relevant here that we implemented our access
control system using an existing groupware system (apart
from taking into account the experiences made with the
application of the existing system).

The evaluation of the problems with the existing access
control system and the study of related problems mentioned
in the current literature provided us with a rough
understanding of the requirements of the new system. We
evaluated the literature looking for a basic model for
representing access policies in cooperative multi-user
systems. As a result we decided to start with a rule based
approach, since it seemed to offer the necessary flexibility
and power. Moreover it turned out that - during the first
user workshop - our end users formulated their access
policies explicitly in form of rules (permissions and denials).

One major design problem using rules was to determine the
exact form of single rules, the semantics of rule evaluation
and the interface for presenting and editing the rule base.
We pursued a user centered approach by asking ourselves
how we would expect access rules to work and be
represented in the system. We designed paper mock ups of
possible user interfaces and evaluated different possibilities
during the first developers workshop. The result of this
workshop was a natural language approach for the
presentation of rules in the user interface and several
interface features for effectively presenting a set of rules to
the users. Concerning rule evaluation we considered a
"most-specific-rule-holds"-scheme most intuitive.

The following rules are examples of typical access rules as
formulated by the participants of the workshop:

R1: User A is allowed to read and write documents in Folder
C

R2: Users of Group B are forbidden to read documents in
Folder C

In the case of inconsistent rules (e.g. if User A is in Group B
and tries to read a document in Folder C) the more specific
rule is applied (in the example this is rule R1 which allows
access). This approach to the resolution of inconsistent rules
was based solely on our (the designers) intuition about (real
world) rule systems. As described later on, we refined the

resolution strategy together with the users in later stages of
the design process.

The next step was the design of a first functional prototype
to get an idea of the problems end users might face when
tailoring their access policies using rules. This prototype
was implemented using Microsoft Visual Basic and allowed
the editing and evaluation of a set of access rules. This
prototype was again evaluated in a designer workshop,
resulting in a set of minor improvements but mainly in a list
of open issues which could not be resolved without the
participation of end users from our field of application.

The most important issue was, upon which factors the
permission or denial of access depends. This question is
important for determining the necessary terms which can
appear in the conditional part of a rule. If an access policy
states, for instance, that access to certain documents is to be
denied on weekends, the denial depends upon the time of
access.

The decision which factors to allow in the conditional part
of a rule thus determines the range of different access
policies which are supported by the system, i.e. the degree of
flexibility which end users can control.

To answer these questions we decided to interview end users
in different fields of application in order to determine the
range of access policies which had to be supported by the
new system. Eliciting the requirements from single users
turned out to be rather easy, because even users with little
computer experience were aware of the (common sense)
need to control access to sensitive documents. All user
involved in our field study could readily formulate the
access policies (in their own language) needed for their
work. Thus, the main challenge of this field study was to
capture the full range of requirements.

We decided to include 3 different organizations in our initial
survey: one of the POLITeam fields of application (the
department of a state ministry), a private company and a
semi-private organization. We selected the different
organizations according the their degree of exposure to
market pressures since we believed that this factor has a
strong influence on the type of access policy needed. As
many government departments in Germany - as a trend - are
being restructured according to the ideas of customer- and
service orientation (there even are several examples of
"outsourcing" previously public functions like waste
disposal to the private sector), we hoped to get a notion of
future requirements by examining organizations with
stronger exposure to market pressures. In each organization
we interviewed at least one subordinate and one superior
(manager). The whole classification scheme for interviewee
selection is shown in figure 6:

O. Stiemerling, H. Kahler, V. Wulf: How to Make Software Softer - Designing Tailorable Applications

organization
person

public semi-private private

superior
subordinate

Fig. 6: classification scheme for user selection

The interviews were conducted in the offices of the
respective persons. They were semi-structured in the sense
that we had prepared a set of open lead questions in order to
initiate the interview and motivate the interviewee to talk
about the sometimes rather touchy subject of access rights.
The semi-structured questionnaire basically contained the
following items:

• General questions concerning the position and
responsibilities of the interviewee in the respective
organisation,

• Questions concerning the (electronic and paper)
documents related to the work of the interviewee (e.g.:
"What documents do you work with and what do they
contain?"),

• Questions concerning the collaborative aspects of the
work (e.g.: "Who else needs to access these
documents?),

• Direct questions concerning the permission and denial of
access to the respective documents (e.g.: "Who is
allowed to read or change the documents?").

As mentioned before, we also included questions concerning
intuitive resolution strategies for inconsistent access policies
(e.g.: "If one policy states that nobody is allowed to read
documents on your desk and another policy states that
members of a certain project group may read documents on
a part of your desk, which of these two policies should be
applied by the system?").

Our goal was to elicit the access policies used in connection
with the documents (on paper and on existing computer
media) used by the interviewees. We conducted all together
12 interviews equally distributed over the different classes in
figure 6.

The main result of our survey was the set of factors -

concerning the context of user and object - which were used
in access policies to determine whether access is to be
allowed or denied. They ranged from obvious central
elements like the user or the object itself, over other
anticipated factors like organizational roles to surprising
aspects, e.g. the political affiliation of users, or their state of
health ("Only if I am sick, my colleagues may access my
desktop."). We also noticed the important role of time-
dependent access policies (e.g.: "Our sales force is only
allowed to access this price list until first of March"). Since
we want to concentrate here on issues of the design process
of tailorable software rather than access control, we refer to
our other work ([28], [27]) for a more extensive discussion
of the results. We only want to mention here, that due to the
rather exotic nature of some of these access factors, not all
factors developed during the field study could directly be
implemented in the second prototype (e.g. making access
dependent on the state of health of a user, which is
obviously hard to do).

Once the interviews were evaluated we began to design the
second prototype. This prototype was fully integrated in the
LinkWorks-environment, i.e. the access policies did have a
real effect upon the documents in the system. The old access
control system was neutralized. The purpose of this
prototype was the end user evaluation of the rule based
approach. Figure 7 shows the presentation of the rules valid
for a certain object. The rules are ordered according to the
interpretation algorithm with the more specific rules on top
and the more general rules at the bottom.

The user has the opportunity to query the rule base (button:
"explore access behavior") in case he or she does not
understand the presentation.

Figure 8 show the screen for editing a single rule. The user
enters the elements of the rule using simple, well-know
control elements like drop-down boxes. A very successful
feature in this screen is the instant feedback in natural
language in the lower part of the window. After every
selection in the form the rule description changes according
to the users action. During evaluation this feature allowed
even first time users to identify and correct mistakes.

Figure 7: Screen presenting access rules to the end user

O. Stiemerling, H. Kahler, V. Wulf: How to Make Software Softer - Designing Tailorable Applications

We used the Thinking Aloud Method (see [23]) for the
evaluation of our user interface. The basic idea of this
method is to let users carry out a number of real world task
with the prototype and ask them to "think aloud" about their
interpretation of presentation and possible actions.
Especially the motivation behind the actions is of interest.

The evaluation was carried out in a laboratory setting. A
simple scenario involving a diary and a group of "good
friends" was prepared. The users (6 users from 3 different
skill-levels spanning developers, power users and novices)
were given a set of tasks consisting of access policies they
had to implement. A simple access policy, for example, was
"The group of ’good friends’ is allowed to read the diary.", a
more difficult one was "Oliver is not allowed to read the
diary on weekends."

The usability test revealed several problems in the design of
the user interface, especially ambiguities in the use of
natural language to describe rules. However, the underlying
rules-concept was understood by the end users. At this point
we are confident that a majority of end users in our field of
application are able to successfully implement access
policies using our system.

The rule based approach is flexible enough to support a
wide range of access policies and we believe that we have
captured a number of relevant factors determining
permission or denial in real world access polices in a broad
range of fields of application.

Design of a search tool for groupware
The second case that shall be described here is the redesign
of a search tool for the POLITeam project. The aspects of
this case concerning the participatory and evolutionary
approach of development are covered in depth in [15].

The basic version of LinkWorks had a tool implemented that
allowed the user to search for any object independent of its

actual location within the system. Discussions with users
revealed that this search tool was not well enough designed
to be used by our application partners since the issues of
privacy and unintentional manipulation of shared files were
not satisfactorily dealt with, possible conflicts about
snooping around on others’ desks were not considered. Thus,
the original design did not take the diversity of searching
activities in different fields of application into account.
Moreover, the user interface was overloaded with functions
unneeded by our application partners. So we decided to
improve the existing search tool or build a new one with the
means that LinkWorks as an object oriented system
provided.

Our first goal was to identify the basic functionality of a
groupware search tool as well as additional features that
might be needed in one organization or work setting but not
in the other. To do so, in the course of the redevelopment of
the search tool different techniques for requirement analysis
were involved (see fig. 9). We conducted 10 interviews with
interview partners from four different organizations one of
which was a POLITeam application partner, held four work-
shops with POLITeam members where aspects of searching
were raised, two of which were dedicated to search tool pro-
totypes, and we developed three prototypes of search tools
which were later evaluated. Moreover, the POLITeam user
advocates (see [20]) helped us to get a better understanding
of the work of our application partners and their
requirements.

To get a better understanding of how search in a work group
is performed we started with conducting interviews about
how people who cowork with each other search objects, i.e.
documents, papers, or folders in an office environment. We
talked to ten people, the interviews were led with one person
at a time, lasted about 30-45 minutes each and were
conducted along a questionnaire with 29 questions that
served as a guide which left space for additional questions
and talk. The questionnaire had two parts having the
interviewees take the roles of both a person searching
something in a work group and person „being searched on“,
i. e. someone, who was asked about or for an object.

The answers of the interviewees shed a light on different
aspects of searching in a work group. While the general
search criteria were the same in different organizations (the
file name, date, key words, and the author of a document)
the ways how and where objects are stored in a particular
work place differed in the different organizations. This
includes organizational as well as personal storage. Several
personal preferences could be found which the interviewees
stated to be efficient for themselves. On the organizational
level we found different structures to sort and order
documents like order by date, by internal or external order
numbers or by task areas and within them again by project
number and date. The common search criterion to search
only in text documents was later implemented in a check
box of the prototype as optional behavior.

Fig. 8: Screen for editing a single rule

O. Stiemerling, H. Kahler, V. Wulf: How to Make Software Softer - Designing Tailorable Applications

Potential conflicts came up where electronic search on
others’ desks was discussed. Here, the symmetric design of
the questionnaire allowed for every interviewee to take the
role of a „searcher“ and the role of a person „being searched
on“. In the role of a person searching actively the
interviewees pleaded for a nearly unlimited access for
electronic search arguing that this would be helpful and
necessary for cooperation and adequate for team work.
When they took the role of a person affected by someone
else's electronic search some of them felt uncomfortable
knowing that everyone could look into their folders and

considered this as an unwanted intrusion. So obviously,
there is a conflict potential in performing an electronic
search on another person's desk that requires a context
specific solution: While in one case it might be adequate to
prohibit a system-wide search at all in another case or
organization it might be sensible to generally allow for a
search within a work group (could be implemented as
conditional behavior) or allow for it under the condition that
a mail is generated that the electronic desk was searched.

Besides the interviews in this first step of the redevelopment
of the search tool two workshops were held with a group of

Figure 9: Redesign process for the search tool

O. Stiemerling, H. Kahler, V. Wulf: How to Make Software Softer - Designing Tailorable Applications

users of one application partner where searching was
discussed among other topics. The workshops brought out
much more of the group dynamics than the interviews were
able to and underlined the relevance of different conventions
e.g. regarding the naming of documents within different
subunits of one organization.

In reprogramming the search tool we had to decide whether
to change the original search tool to fit the new requirements
or to use an external programming language for the search
tool prototype and access the LinkWorks objects by means
of the programming interface. We decided for the latter
alternative which lowered the performance considerably but
provided for more flexibility. This was due to the fact that
although LinkWorks is object oriented and has some
mechanisms to change the system behavior it still had the
original search tool encapsulated and did not allow to use all
of the internal methods needed. A major improvement in the
resulting prototype 1 was the distinction of the area where
an object was found (i.e. on the searcher’s own desk, on
someone else’ s desk or in the archive of the group, see fig.
10) as a first step towards conflict management.

This prototype was presented to system developers and user
advocates, then changed, and the changed version
(prototype 2) was shown to three users from one of our
application partner organizations in a workshop with the
primary goal of the evaluation of the functionality and user
interface of the new search tool. These users not only
suggested some minor changes to the user interface which
were considered in the next prototype but also hinted at
another major feature that could be subject to tailoring
activities: They suggested that objects found by the search
tool might not only be represented as a link to the original
object on the searcher’s desk but might alternatively be
copied to the searcher’s desk from the owner’s desk. While
this might be seen as a contradiction to the design ideas of
LinkWorks it became clear that this was the appropriate
solution for some settings.

Though we initially thought that this prototype 3 could
become part of the POLITeam system the feedback from the
workshop and the statements of the user advocates
convinced us to redesign the prototype and provide a (more)
tailorable version. The current version of the search tool that
suits the needs of one particular work group of our
application can be considered to be the default configuration
of a future system there and as a means to have the users get
to experience and get used to electronic search so they can
discuss refinements in the current configuration.

In a next step we will enhance the search tool by different
mechanisms supporting the choice of functionality options
and the construction of conditions for system behavior. To
do this, the initial interviews conducted before the first
prototype can be helpful to identify options for tailorability.
More interviews and workshops will be held to cover the
range of desired system search behavior. User advocates
have stated that users in one other field of application do not

like objects from their desk or certain folders to be linked or
copied to certain or all others’ desks but would not mind if
the searcher got the information where the object is or some
other attributes or would agree to a copy if they received a
mail informing them about the action. This requires
conditional system behavior that goes way beyond
individual settings. Here, the rule-based approach taken in
the design of the access control system (see first case) can be
helpful to specify who may search on whose desk and if the
search result is a link to or a copy of the file or just some
information about it.

While the configuration of the number of search options is
well-known on an individual level (e.g. in the search tool of
the Apple Mac OS 7.5x) our main focus will be on the group
level of tailoring where more than one person is affected by
the use of system functionality. This will be subject to future
intertwined work on the search tool and the conflict
management to be implemented.

The redesign and reimplementation of the search tool
showed that our broad approach to get requirements from
different organizations by conducting interviews, doing
workshops, discussing prototypes including hands-on-
experience and being supported by the knowledge of user
advocates helped to provide a deeper understanding of the
aspects to be considered to develop search tool for
groupware prepared to be enhanced by different tailorability
mechanisms.

CONCLUSION
In this paper we have presented some thoughts and
experiences on making software softer by end-user tailoring.
They are motivated by the growing need for tailorability due
to the diversity and dynamics of application organizations
for software and particularly groupware products. We
described approaches to catch these multiple requirements
employing heuristic selection schemes in combination with
participatory & evolutionary design techniques like
interviews, workshops, user advocacy, thinking aloud,
mockups and prototyping.

Fig. 10: Output dialog of search tool showing where
objects were found

O. Stiemerling, H. Kahler, V. Wulf: How to Make Software Softer - Designing Tailorable Applications

These methods were applied in the POLITeam project
where we take an evolutionary and participatory approach of
system development and enhancement based on Floyd’s
STEPS model extended by tailoring activities. We have
presented the cases of the design of an access control system
and the design of a groupware search tool where different
methods for the tailorability requirements analysis were
used.

While this work is still ongoing many questions concerning
the design of groupware products for end-user tailorability
remain open. Not only do we need more case experience but
also a more refined taxonomy for end-user tailoring and
research on software architectures supporting tailoring. The
explicit integration of tailorability in existing design
methodologies and modeling languages is another open
question.

While the diversity of the field of application might be
understood by actually researching in different organizations
and subunits of one organization, the dynamics of use
allowing for at least some prediction of future use is more
difficult to catch empirically. Moreover, we feel that more
work needs to be directed to group-related tailoring
including the question of adequate default configuration,
non-technical and technical conflict management and the
integration of technical and organizational development.
Moreover, we will have to discuss the requirements resulting
from our experience for the design of a tailorable software
architecture. The experiences presented here may be a
starting point to link tailorability to participative system
development

REFERENCES
1. Bentley, R. and Dourish, P.: Medium versus Mechanism.

Supporting Collaboration Through Customisation, in:
Marmolin, H.; Sundblad, Y.; Schmidt, K. (Hrsg.),
Proceedings of the Fourth European Conference on
Computer Supported Cooperative Work - ECSCW ’95,
Kluwer, pp. 133-148.

2. Boehm, B. W.: Software Engineering, in: IEEE
Transactions on Computers, C-25 (1976), 12, pp.
1216-1241.

3. Boehm, B. W.: A Spiral Model of software development
and enhancement, in: Computer, 5/1988, pp. 61-72.

4. Carter, K., and Henderson, A.: Tailoring Culture, in:
Hellman, R., Ruohonen, M., Sørgaard, P. (eds.):
Proceedings of the 13th IRIS. Reports on Computer
Science and Mathematics no. 107, Åbo Akademi
University 1990, pp. 103-116.

5. DEC, Digital Equipment Corporation: LinkWorks
Version 3.0 - User's Guide. Part number
AA-Q3KYB-TE, 1995.

6. Ecklund, E.F.; Delcambre, L.M.L.; Freiling, M.J.:
Change Cases: Use Cases that Identify Future

Requirements, in: Proceedings of OOPSLA '96, CA,
USA, ACM Press, 1996, pp. 342-358.

7. Floyd, Ch; Reisin, F.-M.; Schmidt, G.: STEPS to
software development with users, in: Ghezzi, C.;
McDermid, J.A. (eds.): ESEC'89 - 2nd European
Software Engineering Conference, University of
Warwick, Coventry, Lecture Notes in Computer Science
No. 387, Heidelberg, Springer, 1989, pp. 48 - 64.

8. Grønbæk, K., Kyng, M., Mogensen, P.: Cooperative
Experimental System Development - Cooperative
Techniques Beyond Initial Design and Analysis, in:
Proceedings of the 3rd Decennial Conference: Computers
in Context: Joining Forces in Design, Aarhus, Denmark,
August 14-18, 1995, pp. 20-29.

9. Grudin, J.: Why groupware applications fail: problems in
design and evaluation, in: Office: Technology and
People, 4. Jg., No. 3, 1989, pp. 245-264.

10. Haaks, D.: Anpaßbare Informationssysteme - Auf dem
Weg zu aufgaben- und benutzerorientierter
Systemgestaltung und Funktionalität, Göttingen u.a.
1992.

11. Henderson, A. and Kyng M.: There's No Place Like
Home. Continuing Design in Use, in: Design at Work,
Lawrence Erlbaum Associates, Publishers, 1991, pp.
219-240.

12. Henderson-Sellers, B. and Edwards, J.M.: The
object-oriented System Life Cycle. In: Communications
of the ACM, Vol. 33, 9, pp. 143-159.

13. Jacobsen, I.; Christerson, M.; Jonsson P.; Övergaard, G.:
Object-Oriented Software Engineering: A Use Case
Driven Approach, ACM Press, 1992.

14. Kahler, H.: From Taylorism to Tailorability: Supporting
Organizations with Tailorable Software and
Object-orientation, in: Anzai, Y.; Ogawa, K.; Mori, H.
(eds): Symbiosis of Human and Artifact - Future
Computing and Design for Human-Computer
Interaction, Elsevier, Amsterdam 1995, pp. 995 – 1000.

15. Kahler, H.: Developing Groupware with Evolution and
Participation - A Case Study, in: Proceedings of the
Participatory Design Conference 1996, Cambridge, MA,
November 1996, pp. 173-182.

16. Kjær, A. and Madsen, K. H.: Participatory Analysis of
Flexibility: Some Experiences, in : Proceedings of the
Participatory Design Conference 1994, Chapel Hill, NC,
USA, 27-28 October 1994, p. 21-31.

17. Klöckner, K., Mambrey, P., Sohlenkamp, M., Prinz, W.,
Fuchs, L., Kolvenbach, S., Pankoke-Babatz, U. und Syri,
A.: POLITeam - Bridging the Gap between Bonn and
Berlin for and with the Users. In Proceedings of

O. Stiemerling, H. Kahler, V. Wulf: How to Make Software Softer - Designing Tailorable Applications

ECSCW’95 (Stockholm, September 1995), Kluwer,
Dordrecht, pp. 17-31.

18. McLean, A.; Carter, K.; Lövstrand, L.; Moran, T:
User-tailorable Systems: Pressing the Issue with Buttons,
in: Proceedings of the Conference on Computer Human
Interaction (CHI '90), April 1-5, 1990, Seattle,
Washington, ACM-Press, New York 1990, pp. 175-182

19. Malone, Th. W.; Fry, Ch.; Lai, K.-Y.: Experiments with
Oval: A Radically Tailorable Tool for Cooperative
Work. In: CSCW '92. Sharing Perspectives,
Procceedings of the Conference on Computer-Supported
Cooperative Work, ACM-Press, New York, 1992, pp.
289-297.

20. Mambrey, P., Mark, G., Pankoke-Babatz, U.: Integrating
user advocacy into participatory design: The designer’s
perspective, in: Proceedings of the Participatory Design
Conference 1996, Cambridge, MA, November 1996, pp.
251-260.

21. Mørch, A.: Method and Tools for Tailoring of
Object-oriented Applicatios: An Evolving Artifacts
Approach, PhD-Thesis, University of Oslo, Department
of Computer Science, Research Report 241, Oslo 1997.

22. Nardi, B, and Miller, J.: Twinkling lights and nested
loops: Distributed problem solving and spreadsheet
development. International Journal of
Man-Machine-Studies, Vol. 34, 1991, pp. 69-82.

23. Nielsen, J.: Usability Engineering, AP Professional, New
York 1993.

24. Oberquelle, H.: Situationsbedingte und
benutzerorientierte Anpaßbarkeit von Groupware, in:
Hartmann, A.; Hermann, Th.; Rohde, M.; Wulf, V.
(Hrsg.), Menschengerechte Groupware -

Software-ergonomische Gestaltung und partizipative
Umsetzung, Teubner Stuttgart 1994, pp. 31-50.

25. Olsen, D.R., Foley, J.D., Hudson, S.E., Miller, J., and
Myers, B.: Research Directions for User Interface
Software Tools, in: Behavior and Information
Technology 12. 2. 1993, pp. 80-97.

26. Paetau, M.: Configurative Technology: Adaptation to
Social Systems Dynamism. In: Oppermann, R. (Hg.):
Adaptive User Support - Ergonomic Design of Manually
and Automatically Adaptable Software. Hillsdale, New
Jersey 1994: Lawrence Erlbaum Ass. pp. 194 – 234.

27. Pfeifer, A.; Stiemerling O.: Konfiguration des
Informationsdienstes in Groupware. Proceedings of the
3. Internationale Tagung Wirtschaftsinformatik, 26.-28.
Feb. 1997, Berlin, Germany, pp. 263-278.

28. Stiemerling, O.: Anpaßbarkeit von Groupware - ein
regelbasierter Ansatz. Diploma thesis (in German),
University of Bonn, 1996.

29. Trigg, R. H., Moran, T. P., & Halasz, F. G.: Adaptability
and tailorability in NoteCards, in: Proceedings of
INTERACT ´87. Stuttgart 1987, Germany, pp. 723-728.

30. Trigg, R.: Participatory Design meets the MOP:
Accountability in the design of tailorable computer
systems, in Bjerknes, G., Bratteteig, T. and Kautz, K.
(eds.), proceedings of the 15th IRIS (Information systems
Research seminar in Scandinavia), Larkollen, Norway
1992, pp. 643-656.

31. Wulf, V. and Rohde, M.: Towards an Integrated
Organization and Technology Development, in: Olson,
G./Schuon, S. (Hrsg.), Symposium on Designing
Interactive Systems. Processes, Practices, Methods &
Techniques, ACM 1995, pp. 55-65.

	ABSTRACT
	KEYWORDS
	INTRODUCTION
	DESIGNING TAILORABLE SOFTWARE
	The relationship of tailorability and evolutionary & participatory design
	Capturing diverse and future requirements
	The POLITeam Project

	TWO DESIGN CASES
	Design of an access control system for groupware
	Design of a search tool for groupware

	CONCLUSION
	REFERENCES

